(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(b(x)) → b(b(a(a(x))))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a(b(x)) → b(b(a(a(x))))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
a(b(x)) → b(b(a(a(x))))
Types:
a :: b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a
(6) Obligation:
Innermost TRS:
Rules:
a(
b(
x)) →
b(
b(
a(
a(
x))))
Types:
a :: b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
The following defined symbols remain to be analysed:
a
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
a(
gen_b2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
a(gen_b2_0(+(1, 0)))
Induction Step:
a(gen_b2_0(+(1, +(n4_0, 1)))) →RΩ(1)
b(b(a(a(gen_b2_0(+(1, n4_0)))))) →IH
b(b(a(*3_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
a(
b(
x)) →
b(
b(
a(
a(
x))))
Types:
a :: b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b
Lemmas:
a(gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
a(gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
a(
b(
x)) →
b(
b(
a(
a(
x))))
Types:
a :: b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b
Lemmas:
a(gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
a(gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(14) BOUNDS(n^1, INF)